Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(52): 111850-111870, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37848791

RESUMO

Advances in agriculture include integrated methods of controlling pests, diseases, and weeds with biocontrollers, which are constantly increasing, along with herbicides. The objective is to present a systematic review of the main reports of herbicide effects on non-target organisms used in applied biological control and those naturally occurring in the ecosystems controlling pests. The categories were divided into predatory and parasitoid arthropods. Three hundred and fifty reports were analyzed, being 58.3% with parasitoids and 41.7% with predators. Lethal or sublethal effects of herbicides on reproduction, predation, genotoxicity, and abundance of biological control organisms have been reported. Two hundred and four reports of the impact of herbicides on parasitoids were analyzed. The largest number of reports was with parasitoids of the genus Trichogramma, with wide use in managing pests of the herbicide-tolerant transgenic plants. Most tests evaluating effects on parasitism, emergence, and mortality of natural enemies subjected to herbicides are with parasitoids of Lepidoptera eggs with a high diversity and use in managing these pests in different crops. Additive and synergistic effects of molecules increase the risks of herbicide mixtures. Herbicide use for weed management must integrate other control methods, as the chemical can impact natural enemies, reducing the biological control of pests.


Assuntos
Artrópodes , Herbicidas , Himenópteros , Lepidópteros , Animais , Herbicidas/farmacologia , Ecossistema , Controle Biológico de Vetores/métodos , Controle de Plantas Daninhas
2.
Chemosphere ; 334: 138943, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37201603

RESUMO

Pesticide dependence is one of the main disadvantages of agriculture. Despite the advances in biological control and integrated management of plant pests and diseases in recent years, herbicides are still essential for weed control and constitute the main class of pesticides worldwide. Herbicide residues in water, soil, air, and non-target organisms are among the biggest agricultural and environmental sustainability obstacles. Therefore, we suggest an environmentally viable alternative to reduce the harmful effects of herbicide residues, a technology called phytoremediation. Remediating plants were grouped into herbaceous, arboreal, and aquatic macrophytes. Phytoremediation can reduce the loss of at least 50% of all herbicide residues to the environment. Among the herbaceous species reported as phytoremediators of herbicides, the Fabaceae family was mentioned in more than 50% of reports. This family is also among the main species of trees reported. Regarding the most reported groups of herbicides, it is observed that most of them, regardless of the group of plants, are triazines. Processes such as extraction or accumulation are the best known and reported for most herbicides. The phytoremediation may be effective against chronic or unknown herbicide toxicity. This tool can be included in proposals for management plans and specific legislation in countries, guaranteeing public policies to maintain environmental quality.


Assuntos
Biodegradação Ambiental , Praguicidas , Agricultura , Herbicidas/química , Plantas , Tecnologia
3.
Int J Phytoremediation ; 25(3): 275-282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35544425

RESUMO

The objective of this work was to evaluate crops for their ability to phytoremediate diclosulam residues in the soil and produce lignocellulosic ethanol. Physiological characteristics, biomass production, soil cover rate, fermentable sugar production and lignocellulosic ethanol production potential of the crops were evaluated in soil with diclosulam residues. The experimental design was a randomized block with four replications. The treatments were arranged in a 4 × 2 factorial scheme with the following crops as the first factor: Avena sativa, Canavalia ensiformis, Mucuna aterrima, and Pennisetum glaucum. The second factor was the presence or absence of the herbicide diclosulam in the soil (30 g ha-1). The physiological variables of the plant species were not affected by the presence of diclosulam; the soil cover of P. glaucum was lower in the area with diclosulam, with a value of 26%. The levels of glucose were not affected by the presence of diclosulam in A. sativa, C. ensiformis, and M. aterrima, indicate not change the estimated yield of ethanol for this species. Avena sativa and Pennisetum glaucum have the potential to phytoremediate soils containing diclosulam residues, with concomitant lignocellulosic ethanol production ability.


Phytoremediation of soils with herbicide residues is a viable tool and has been increasingly widespread throughout the world. The use of plant species capable of making the soil feasible for successive plantings sensitive to previously applied residual herbicides is a way to optimize agricultural production. However, there are few studies in which vegetable biomass used in the phytoremediation process is used. Thus, our study is innovative because it seeks to combine phytoremediation with the production of bioethanol, ensuring even more sustainable agriculture.


Assuntos
Herbicidas , Pennisetum , Biodegradação Ambiental , Solo/química , Produtos Agrícolas , Etanol
4.
Braz. j. biol ; 83: e242676, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1278552

RESUMO

Abstract Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


Resumo As árvores que ocorrem nas margens das áreas agrícolas podem mitigar os danos dos herbicidas residuais. A atividade microbiana rizosférica associada às árvores é um dos principais indicadores de capacidade corretiva. O objetivo deste trabalho foi avaliar a atividade microbiológica rizosférica em espécies arbóreas submetidas aos herbicidas atrazina e sulfentrazone via rizosfera. O experimento foi estruturado em quatro blocos e esquema fatorial 6 × 3. O primeiro fator consistiu em seis espécies de árvores do Brasil e o segundo em soluções de atrazine, sulfentrazone e água. Quatro aplicações de herbicidas foram realizadas via irrigação. Foram determinados a massa seca total das plantas, colonização micorrízica, número de esporos, respiração basal do solo rizosférico e taxa de sobrevivência de plantas bioindicadoras após fitorremediação. Trichilia hirta apresentou maior biomassa quando tratada com atrazina e sulfentrazone. Os herbicidas diminuíram a atividade microbiana em Triplaris americana e não afetaram os indicadores microbiológicos de Myrsine gardneriana, Schizolobium parahyba e Toona ciliata. Menos plantas bioindicadoras sobreviveram no solo com Triplaris americana e sulfentrazone. Os indicadores microbiológicos foram influenciados de formas distintas entre as espécies pela presença dos herbicidas na rizosfera.


Assuntos
Poluentes do Solo , Micorrizas/química , Herbicidas , Solo , Microbiologia do Solo , Árvores , Brasil , Raízes de Plantas/química , Plântula , Rizosfera
5.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469033

RESUMO

Abstract Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


Resumo As árvores que ocorrem nas margens das áreas agrícolas podem mitigar os danos dos herbicidas residuais. A atividade microbiana rizosférica associada às árvores é um dos principais indicadores de capacidade corretiva. O objetivo deste trabalho foi avaliar a atividade microbiológica rizosférica em espécies arbóreas submetidas aos herbicidas atrazina e sulfentrazone via rizosfera. O experimento foi estruturado em quatro blocos e esquema fatorial 6 × 3. O primeiro fator consistiu em seis espécies de árvores do Brasil e o segundo em soluções de atrazine, sulfentrazone e água. Quatro aplicações de herbicidas foram realizadas via irrigação. Foram determinados a massa seca total das plantas, colonização micorrízica, número de esporos, respiração basal do solo rizosférico e taxa de sobrevivência de plantas bioindicadoras após fitorremediação. Trichilia hirta apresentou maior biomassa quando tratada com atrazina e sulfentrazone. Os herbicidas diminuíram a atividade microbiana em Triplaris americana e não afetaram os indicadores microbiológicos de Myrsine gardneriana, Schizolobium parahyba e Toona ciliata. Menos plantas bioindicadoras sobreviveram no solo com Triplaris americana e sulfentrazone. Os indicadores microbiológicos foram influenciados de formas distintas entre as espécies pela presença dos herbicidas na rizosfera.

6.
Int J Phytoremediation ; 24(9): 987-994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34665679

RESUMO

Hormone-like herbicides, used for large crops, can contaminate non-target areas with their waste. The objective of this study was to evaluate the tolerance of Mabea fistulifera and Zeyheria tuberculosa to 2,4-D + picloram herbicides by means of morphological and anatomical evaluations. The experiment was performed in a greenhouse in a 4 × 2 factorial scheme. The first factor was the control (without herbicide) and three doses (0.166; 0.333, and 0.666 L ha-1) of the herbicide Tordon® (402 g L-1 2,4-D + 103.6 g L-1 picloram) and the second factor, the species Mabea fistulifera and Zeyheria tuberculosa. The number of M. fistulifera leaves was lower after treatment with the highest dose of the 2,4-D + picloram mixture. The herbicide rates did not influence the number of Z. tuberculosa leaves. The higher dose of 2,4-D + picloram caused a more than 50% reduction in leaf area. Toxicity increased linearly as a function of the doses of the 2,4-D + picloram mixture. Changes in the leaf anatomy of the two species treated with herbicides were observed; however, the roots did not show any changes. Mabea fistulifera and Zeyheria tuberculosa can be recommended for phytoremediation programs in areas contaminated by the herbicides 2,4-D + picloram.


Phytoremediation of soils contaminated with herbicides is a recent and viable tool for environmental decontamination and for the protection of water resources. Mabea fistulifera and Zeyheria tuberculosa can be used to compose riparian forests and retain the arrival of herbicides in the water. Plant anatomy and morphological characteristics are viable tools to assess the tolerance and phytoremediation potential of plant species. Mabea fistulifera and Zeyheria tuberculosa are tolerant to the presence of hormonal herbicides. In this way, they can be used to recover natural areas close to the cultivation areas where the herbicides 2,4-D and picloram are used.


Assuntos
Herbicidas , Picloram , Ácido 2,4-Diclorofenoxiacético , Biodegradação Ambiental , Solo
7.
Braz J Biol ; 83: e242676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161454

RESUMO

Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


Assuntos
Herbicidas , Micorrizas , Poluentes do Solo , Brasil , Micorrizas/química , Raízes de Plantas/química , Rizosfera , Plântula , Solo , Microbiologia do Solo , Árvores
8.
Artigo em Inglês | MEDLINE | ID: mdl-33959837

RESUMO

Knowledge of the partition mechanisms in the agrochemical environment is fundamental for understanding their behavior within an ecosystem and mitigating possible adverse effects of these products. In this review, the objective was to present the main transport mechanisms, physical-chemical properties, and atmospheric monitoring methodologies of the most diverse types of agrochemicals used in agriculture that can reach the atmosphere and affect different compartments. It has been verified that volatilization is one of more considerable significance of the various forms of transport since a significant part of the applied pesticides can volatilize in a few days. As for monitoring these compounds in the atmosphere, both passive and active sampling have their advantages and disadvantages. Passive samplers allow sampling in large quantities and at remote locations, in addition to making continuous measurements, while active samplers have the advantage of being able to detect low concentrations and continuously. Since a significant portion of the applied pesticides is directed to the atmosphere, monitoring makes it possible to understand some properties of the pesticides present in the air. This monitoring can be done from different existing methodologies based on adopted criteria and existing technical standards. Graphical representation of mobility and environmental monitoring of atmospheric pollutants from pesticides.

9.
Int J Phytoremediation ; 23(6): 609-618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33211971

RESUMO

Pre-emergent herbicides have been developed for their long residual effect; however, they can make sensitive successor cultures unfeasible. Waste remediation techniques are needed for sustainable agricultural systems; for this, the edaphoclimatic asymmetries in the country must be considered. This study aimed to evaluate the remedial capacity of the herbicide diclosulam by covering crops under different edaphoclimatic conditions. Treatments were arranged in an n × 2 factorial scheme, the first factor being the number of plant species in each location and the second being the presence or absence of diclosulam in the soil. The physiological and growth characteristics of 15 potential phytoremediation species were evaluated. Herbicide residues in the environment were positively correlated with the soil pH; organic matter, aluminum, and silt contents; and aluminum saturation. The effectiveness of phytoremediation varied between species and between regions. Plant species suitable for efficient phytoremidation systems of diclosulam residues were Canavalia ensiformis for Couto Magalhães de Minas, Cajanus cajan and Canavalia ensiformis for Diamantina, Raphanus sativus for Erechim and Cajanus cajan for São João Evangelista.


Assuntos
Herbicidas , Poluentes do Solo , Biodegradação Ambiental , Solo , Sulfonamidas , Triazóis
10.
Int J Phytoremediation ; 22(8): 827-833, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31948264

RESUMO

The atrazine and clomazone molecules have potential to contaminate environments, especially water resources. Phytoremediation decontamination can prevent or reduce the quantity of these products reaching watercourses. The objective was to evaluate the remedial potential and the physiological sensitivity of Eremanthus crotonoides (DC.) Sch. Bip and Inga striata Benth to atrazine and clomazone in soils contaminated with 0.0, 0.5, 1.0 and 2.0 times the recommended commercial dose of these herbicides. The photosynthesis, CO2 consumed stomatal conductance and transpiration of E. crotonoides and I. striata, in soils contaminated with atrazine and clomazone, were evaluated. The herbicide residues were detected by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) 30 days after the last herbicide application. The photosynthesis rate and CO2 consumed by E. crotonoides and I. striata were lower in soils contaminated by atrazine and clomazone. Inga striata had lower stomatal conductance and transpiration in soil contaminated with clomazone. Eremanyhus crotonoides and I. striata reduced the residues of these herbicides. The atrazine and clomazone reduced the physiological variables of E. crotonoides and I. striata. These plants can be used to recover areas with residues of these herbicides, acting as filters that will decrease the amount of herbicides that would reach the watercourses.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Biodegradação Ambiental , Isoxazóis , Oxazolidinonas , Solo , Espectrometria de Massas em Tandem
11.
Int J Phytoremediation ; 22(1): 78-86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31364395

RESUMO

Residual herbicides are important for agricultural production but they may be lost underground. Trees capable of removing or degrading these products are interesting to the agro system. The objective was to evaluate the tolerance and remedial potential of trees in soil contaminated by atrazine and sulfentrazone. The experiment was arranged in a 7 × 3 factorial scheme. Factor one was composed of Inga edulis Mart., Myrsine gardneriana A.DC., Schizolobium parahyba (Vell.) Blake, Toona ciliata M. Roem., Trichilia hirta L. and Triplaris americana L. Factor two consisted of monthly solutions of atrazine (1000 g ha-1), sulfentrazone (150 g ha-1) and water only (control), applied through subgrade irrigation. The following parameters were evaluated: visual intoxication, plant growth, and biomass accumulation. Cucumber biomass was used as an indicator of herbicide residues in soil. Symptoms of intoxication were found only in S. parahyba and T. americana. Growth and biomass of the species were not affected by herbicides, except for T. americana. The herbicides provided higher biomass for T. hirta. Saplings of I. edulis, M. gardneriana, S. parahyba, T. ciliate, and T. hirta tolerate atrazine and sulfentrazone. Triplaris americana is sensitive to sulfentrazone. Inga edulis decreased sulfentrazone residues in the soil.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Biodegradação Ambiental , Rizosfera , Sulfonamidas , Árvores , Triazóis
12.
Int J Phytoremediation ; 22(1): 69-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31342787

RESUMO

The 2,4-D (2,4-dichlorophenoxyacetic acid) has low half-life in the soil, but it is capable of altering the soil microbial community. The objective of this study was to evaluate the influence of 2,4-D residues on the structure of the soil microbial community and the growth of tree species. The tolerance and phytoremediation potential of tree species were evaluated. The microbial analysis was performed by T-RFLP. The 2,4-D herbicide reduced the plant height of K. lathrophyton, number of leaves of C. ferrea and K. lathrophyton and root dry matter allocation for C. brasiliense, I. striata, P. heptaphyllum, and T. guianensis. Cucumis sativus intoxication on soil contaminated with 2,4-D was not significant. The structure of Fungi community in the rhizospheric soils of C. ferrea was altered. The herbicide 2,4-D increased the diversity of Fungi in rhizospheric soils of P. heptahyllum and R. grandis. Most tree species were tolerant, and the evaluation time was sufficient to remedy 2,4-D. The structures of the microbial communities Archaea, Bacteria, and Fungi were little influenced by 2,4-D. The diversity of the Archaea domain was not affected, the diversity of the Bacteria in Inga striata decreased while the fungi increased in Protium heptaphyllum and Richeria grandis with 2,4-D.


Assuntos
Microbiota , Solo , Ácido 2,4-Diclorofenoxiacético , Biodegradação Ambiental , Fungos , Microbiologia do Solo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...